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Abstract. The effect of compression molding (i.e. molding under hydrostatic pressure) on the magnitude and 
distribution of setting stresses in particle-reinforced polymer composites is investigated using the finite element 
method. Models based on fairly random arrangements of the reinforcing particles are used, with different particle 
size gradations, as well as different aggregate-to-resin ratios. An analytical expression of the maximum setting 
stresses in these composites is introduced. A non-linear constrained optimization technique is used to obtain the 
mathematical model parameters which aid in a reasonable numerical estimation of the maximum setting stresses in 
real systems. The numerical results show that externally applied hydrostatic pressure helps diminish some of the 
local setting stresses. However, this relief becomes insignificant at the interface between aggregate particles and the 
resin domains where local setting stresses are maximum. This indicates that the practice of compression molding 
does not have a significant effect in reducing local setting stresses in ordinary polymer concrete systems. 

1. In troduct ion  

Various types of  polymer  concrete (PC),  a composite consisting of mineral  aggregate (sand 
and gravel) and an organic resin binder that hardens of polymerizat ion,  are finding 
increasing use in load-bearing structures. These composites suffer f rom setting stresses, 
genera ted  during the curing process due to shrinkage of the polymerizing resin (cure 
shrinkage),  as the secondary bonds with distances of 3 - 5 / ~  between monomer  molecules are 
conver ted  into primary,  covalent bonds with distances of ca. 1.5 ,~ in the polymer  chain 
network.  Since PC systems contain particulate reinforcement  up to 80% by volume,  the resin 
binder  is largely confined to the interstices between the aggregate particles. When the resin 
starts to polymerize,  a small amount  of cure shrinkage brings these particles in contact,  thus 
forcing the resin to complete  its cure in constant-volume domains.  This inhibition of 
polymerizat ion shrinkage generates a field of tensile stresses, the "sett ing stresses". Cure 
shrinkage and the resulting setting stresses are both highly undeslrable. Poor  control of cure 
shrinkage impairs the moldability, dimensional stability, and appearance  of the cured 
composi te .  Setting stresses decrease its strength and significantly impair its creep resistance. 

Since the setting stresses are tensile in nature,  there is a traditional belief in the plastics 
industry that compression molding (i.e. curing the composite  under hydrostatic pressure) is 
an effective means of alleviating setting stresses. In this paper  we utilize a model ,  previously 
deve loped  for estimating setting stresses in particle reinforced polymer  composites,  to study 
the effect of compression molding on the magnitude and distribution of local setting stresses. 

In a series of recent publications [1-4] we presented several three-dimensional  finite 
e lement  models,  which predict the location, magnitude,  and distribution of setting stresses, 
given the cure shrinkage and physical propert ies  of the resin binder, and the size distribution 
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of the reinforcing particles. These models ranged from systems with orderly arrangements of 
spherical aggregate particles to systems based on fairly random arrangements of nonspherical 
particles. In particular the " F R A "  model, based on a fairly random arrangement of 
quasi-spherical and quasi-ellipsoidal particles, gives a very realistic representation of the 
actual composites, since it describes accurately the shape of the aggregate particles used in 
polymer concrete as well as the packing arrangement of these particles in the composite. The 
criteria used in constructing this model are: (a) the particles are quasi-spherical or quasi- 
ellipsoidal in shape, (b) they occupy more than 50% of the space with the largest particles 
touching each other, and (c) for systems with relatively high packing factors,* the particle 
sizes range over one order of magnitude [5]. 

The results of extensive numerical experiments using finite element analysis (FEA) of 
these models have led to the development of a mathematical expression, which gives the 
functional dependence of the maximum principal setting stresses on the material and 
geometric parameters of the composite in the absence of any applied hydrostatic pressure. 
This equation was presented in [4]. We discuss briefly some of its subsidiary functional 
dependencies. It was found that as the percentage of inherent shrinkage increases, the 
setting stresses tend to increase linearly. The Poisson's ratios of the resin material vary 
linearly with the logarithmic value of the maximum principal stresses. Moreover, the 
Poisson's ratio of the aggregate particles were found to have a negligible effect on setting 
stresses. It was also shown that the maximum principal stresses vary linearly with resin to 
aggregate volume ratio in the composite. These numerical experiments were performed on a 
wide range of models. These models include several three-dimensional finite element models 
of orderly arrangement of single [1] and multiple sized spherical reinforcing particles [2] as 
well as the F R A  models. It was also found that a third order polynomial was the best fit for 
the relationship between the maximum setting stresses and the aggregate-to-resin Young's 
modulus ratio over a realistic range of materials properties of the individual phases in these 
models. The mathematical expression is stated as follows: 
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O'ma x = ~ e~V( g(a), Sw) ~ tOk( g(a), Sw)13 ~ , (1) 
k=O 

where 

O'ma x 

q,~(g(~), Sw) = 

~;= 

V(g(a),  S~) : 

t3= 

maximum principal tensile setting stress in the PC, normalized with respect 
to the tensile strength of the composite. 
coefficient functions depending on size distribution (a) ,  geometric arrange- 
ment (g) and shape of the aggregate particles; S w (where Sw is the weighted 
average of S i, the ratio of the minor to major axes of aggregate particles). 
Poisson's ratio of the cured resin. 
inherent shrinkage of the resin (in volume %). 
resin to aggregate volume ratio in the composite. This ratio is uniquely defied 
for each geometric arrangement and size distribution of a given shape of 
aggregate particles. 
logarithmic value of the ratio of the tensile (Young's) moduli of aggregate 
and resin; fl > 0. 

* The packing factor is equal to the total volume of the solid particles divided by the total volume of the composite. 
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In this study we use nonlinear constrained optimization techniques to compute the values 
of the unknown parameters in the mathematical model. Several equivalent formulations of 
the mathematical model are presented. Different techniques are used to solve the problem 
which give rise to different solutions. The technique that best fits the physical considerations 
of the problem is presented last and used to compute the coefficient functions of the 
mathematical model. We then use finite element analysis to estimate the maximum setting 
stresses in polymer composites reinforced with quasi-spherical, and/or quasi-ellipsoidal 
particles and molded under hydrostatic pressure. 

2. Composite models 

Our composite models contain quasi-spherical and quasi-ellipsoidal particles ranging within 
the ASTM C33 standards of size gradation [6]; these particles are packed in arrangements 
that are almost random but retain some rudimentary spatial order in that smaller particles 
usually occupy the spaces between the larger particles. We call this model the fairly random 
arrangement (FRA). The symmetric boundary conditions that are applied to these models 
force the resin to shrink in constant volume domains so that the required field of stress is 
generated in the entire composite. 

Following the technique used in our previous studies [1-4] we have simulated the setting 
stresses and resulting strains in the cured composites by means of a thermal shrinkage model, 
in which the resin (with an assumed bulk thermal expansion coefficient, a =2.58 x 
10 -4  °C-1) shrinks against a thermally invariant aggregate (a = 0.0). This generates in the 
resin domains tensile stresses, which simulate the setting stresses. Hydrostatic pressure is 
applied to the boundaries of the FRA models, superimposing compressive stresses. This 
study examines the magnitude and location of the maximum setting stresses generated in the 

FRA MODEL 

Fig. 1. Fairly random arrangement of void/aggregate domains. 
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Fig. 2. Finite element network of the FRA model (1565 elements and 4015 nodes). 

presence of the applied pressure. The stresses are computed using the PAFEC finite element 
program [7, 8]. 

An exemplar FRA model is shown in Fig. 1 in the form of a representative volume 
element.  This element contains all of the variations in size, shape and organization of the 
reinforcing particles, hence it represents a random cross section through the actual compo- 
site. It is noteworthy that the fact that representative volume element boundaries do not 
intersect any particles allows us to apply symmetric boundary conditions without creating 
particles with unrealistic shapes. 

2.1. Finite element analysis 

Figure 2 shows a finite element network of 1656 finite isoparametric elements and 4015 
nodes,  formed for the unit cell of the FRA example shown in Fig. 1. A plane strain analysis 
is considered. Planes of symmetry pass through the boundaries of the FRA models. These 
symmetric planes ensure that the resin shrinks at constant volume domains. The stresses 
generated by the applied pressure are nonuniformly distributed throughout the composite. 
The tensile setting stresses are also nonuniform in their distribution since we have a 
heterogeneous material. The FEA results show the location and magnitude of maximum 
stresses in the various models cured under applied hydrostatic pressure. 

3. Mathematical model 

The  numerical estimation of maximum setting stresses depends on the availability of material 
parameters  such as the elastic moduli and Poisson's ratio for the different constituents of the 
composite,  and the inherent cure shrinkage of the resin. The composite is assumed to be 
macroscopically isotropic. According to this assumption the material properties of the 
constituents are to be invariant from point to point within the composite. Both resin and 
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aggregate are assumed to respond elastically to the generated setting stresses. It is assumed 
that aggregate-to-resin adhesion exceeds the cohesive strength of the cured resin. Cure- 
shrinkage forces within the resin are isotropic and develop uniformly throughout the 
composite under an applied hydrostatic pressure. We have ignored any thermal stresses 
generated by temperature changes during resin cure. This assumption is quite reasonable for 
polymer concrete systems, cured at ambient temperatures. In these systems the inert mineral 
aggregate comprises 70-85% of the volume and, because of its higher density, up to 90% of 
the total mass of the composite. Consequently, the exotherm generated by the polymeriza- 
tion of the resin binder does not increase appreciably the temperature of the overall 
composite during its cure. 

The numerical results of our finite element analysis of several FRA models under applied 
hydrostatic pressure show that the effect of hydrostatic pressure on the maximum principal 
stresses in a particle-reinforced composite can be included in equation (1) as follows: 
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O'ma x = ( 1  - -  Prel)~ e V V ( g ( a ) ,  Sw) ~ q*k(g(o O, S~)/3 k , (2) 
k - 0  

where Prel is a dimensionless pressure term obtained by normalizing the externally applied 
pressure with respect to the tensile strength of the composite in the absence of setting 
stresses. For example, in specially formulated PC systems* containing 75% by volume 
mineral aggregate in polyester/styrene matrix, the measured splitting tensile strength * was 
7.13 × 106 N/m 2. Equation (2) is applicable only to void-free systems.** 

4. Numerical experiments 

Extensive numerical experiments were performed using PAFEC to obtain the maximum 
principal stresses ~r i, i = 1 , . . . ,  n. A set of observations for the physical parameters: vi, fli, 

ffi, i = 1 . . . . .  n were chosen within realistic ranges of values for the materials properties of 
the composite. These are v: 0.30-0.37, if: 0.1-0.21, /3: 0.43-2.8399, and Prel: 0.0--1.547, 
where Prel is the applied hydrostatic pressure normalized against tensile strength of the 
stress-free composite. These observations are substituted in the mathematical expression (2) 
to obtain a system of linear equations with the model parameters tpk(g(a), Sw) as unknowns. 
The linear system has the form Aq~ = y. The entries of the matrix A, the vector ~, and the 
vector y are defined as follows: 

v i . . . .  j - 1  
A = ( a i j )  , aij = P i e  ~iviPi , j = 1 . . . . .  k ,  i = 1, . . . , n , (4a) 

O ( g ( a ) ,  Sw) = (q , k (g (a ) ,  S w ) ) ,  k = O, 1, 2, 3 ,  (4b) 

* In these systems, setting stresses were eliminated by the addition of carefully measured amounts of a chemical 
agent,  which expands during resin cure thus counteracting polymerization shrinkage [9]. 
*The splitting tensile measurements were performed on cylindrical specimens according to the ASTM C-116 
standards using 7.62 cm diameter  by 10.16 cm long specimens. The cylinders were subjected to transverse crushing 
loads at a cross-head speed of 0.01 in/min.  The splitting tensile strength S is given by S = 2 P r / 3 . 1 4 D L  , where PI is 
the load at fracture, D and L are the diameter and length of the specimen respectively [9]. 
** These systems are assumed to be void-free since the externally imposed pressure during their cure is expected to 
expel any air bubbles entrained into the uncured system. 
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y = ( O r m a x j )  , j = 1 . . . . .  n .  (4c) 

The least-squares technique can be used to obtain the vector of the unknown model 
parameters; q,~(g(a), Sw). However, the solution may yield non-physical answers for the 
magnitude of maximum setting stresses. We discuss this in the next section. 

4.1. Constrained least-squares formulation 

The maximum tensile setting stress component o-/ is nonnegative. It is also clear that e ~i, 
V~(g(a), Sw), and, ~,  i = 1 , . . . ,  n are all positive. For this reason we impose a nonnegativi- 
ty constraint on the summation term in equation (2) in order to ensure a physically 
meaningful prediction of the magnitude of maximum tensile setting stresses. 

The least-squares formulation for our problem can be stated as follows: 

minimize IlA0(g(~),  S w ) -  YlI2, (4.1a) 
t~(g(oQ,Sw)~R k 

where 

A ~ R  n×~, y E R  n,  (4.1b) 

IIAq,(g(~), sw) - yl12 = Ilrll2, (4.1c) 

is the Euclidean vector norm defined by IIrll2 = ~/(i-~1- r~). Equation (4.1a)represents  a 

linear least squares problem and q~ which solves (4.1a) is the least squares solution of the 

system Aq~(g(a), Sw)= y. 
The following constrained least-squares formulation. 

minimize IIAtk(g(~), Sw)- Yltz (4.1.1a) 
O( g(ct ) ,Sw)ER k 

subject to 

Bq,(g(~),  sw) />o,  (4.1.1b) 

where 

B = (bq) ,  bq=f l { ,  i = 1  . . . . .  n , j = l  . . . . .  k .  (4.1. lc) 

Problem (4.1.1) has a non-differentiable objective function. This is a drawback since 
special methods are needed to deal with the nondifferentiability. Consequently, we loose the 
advantage of widely used well-developed algorithms that require differentiability. For this 
reason, we consider an equivalent formulation to problem (4.2), namely the quadratic 
programming formulation (QPF). 

4.2. Quadratic programming formulation 

The QPF of our problem can be stated in the following form: 



minimize 
q~(g(cQ,Sw)ER k 
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1 r 
brO(g(a), Sw) + -~ qJ(g(a), Sw) Q~k(g(a), Sw) , (4.2a) 

subject to 

Bq~(g(a), Sw) >! O, (4.2b) 

where 

b = - 2 A r y ,  (4.2c) 

Q = 2ATA. (4.2d) 

If A has k linearly independent columns (i.e. A has full column rank), then the matrix ArA 
is positive definite. In general, A may not have full column rank, consequently, the Hessian 
matrix Q will not be positive definite. However, Q is at least positive semi-definite.* The 
QPF consists of a convex quadratic objective function which is minimized over the feasible 
set S = {~b: B~b ~>0}. 

As is well-known in the case of convex programming, each local solution is a global one. 
Unfortunately, the solution to our problem may not be unique since in general, the objective 
function is not strictly convex. A modification of the objective function (4.2a) is needed to 
force the uniqueness of the solution on our problem. The Hessian matrix has to perturbed to 
force the positive definiteness property.* This can be accomplished by adding a small 
perturbation e to the diagonal entries of the Hessian. This technique is presented in the 
following modified quadratic programming formulation (MQPF): 

4.3. Modified quadratic programming formulation 

The MQPF can be stated as follows: 

1 , T + 
minimize bTqt(g(oO, Sw) + ~ O(g(a) Sw) (Q eI)~b(g(o O, Sw) 

~b( g(ct ), Sw)ER k 
(4.3a) 

subject to 

BO(g(a) ,  Sw) >10. (4.3b) 

In (4.3a), if e is chosen properly, the MQPF would consist of a strictly convex quadratic 
objective function. This function is minimized over the feasible set {~b(g(a),Sw): 
B~b(g(a), Sw)/> 0). In order to prove the existence of the solution to problem (4.3) one has 
to consider only the constraints that are relevant to this problem. These constraints are the 
ones that are active at the solution ~b*(g(a), Sw) (Appendix A.1). Let Bactive be the 
sub-matrix of B that is corresponding to such constraints. Hence, problem (4.4) is reduced to 
the following equality constrained optimization problem: 

; Since Q = ATA, then,  qJrQqs = ~ r A r A O  = IIAOII~ ~ 0 .  
* The  positive definiteness of the Hessian of the objective function guarantees  the existence of a unique solution. 
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minimize q(qJ(g(a), Sw)) , 
~ (g (a ) , Sw)GR k 

(4.3c) 

subject to 

qJ(g(a), S w ) E S  , (4.3d) 

where 

1 
= , Sw) (Q+ eI )#(g(a) ,  Sw) q bTqt(g(a), Sw) + -~ tk(g(a) T (4.3e) 

and 

S = { l ~ ( g ( o ~ ) ,  Sw): B a c t i v e l ~ ( g ( o / ) ,  Sw) : 0}  . (4.3f) 

The objective function q is continuous, convex, and weakly coercive (i.e. satisfies the 
property q(~b(g(a), Sw))---~ +~ as II sw)ll--, ~ (Appendix A.2)). The feasible set S is 
closed and convex (since S is a subspace of Rk). These properties of both q and S ensure the 
existence of the solution of problem (4.3) [10, 11]. 

In order to study the behavior of e in problem (4.3), one has to consider an equivalent 
formulation using the model trust-region strategy. This strategy is one of the most successful 
globalization techniques in constrained optimization. The main idea of this strategy is to add 
a ball constraint which restricts the size of the step taken by the algorithm [12]. The new 
equivalent problem is called trust-region quadratic programming (TRQP). It can be stated as 
follows: 

1 T 
Sw) Qqt(g(a), Sw) minimize br~k(g(a), Sw) + -~ O(g(a) ,  

tk( g(a ) ,Sw)~R k 
(4.3.1a) 

subject to 

Sw) >i o,  (4.3.1b) 

II &)ll= a ,  (4.3.1c) 

where II, 1]2 designate the l 2 n o r m  and 6 is a positive constant represents the radius of the 
trust region, which depends on e.* In the formulation of problem (4.4), the choice of e 
affects the behavior of the solution. Very large values of e cause the problem to be 
ill-conditioned, which would decrease the accuracy of the numerical solution. It may also 
result in an inconsistency of the hyperplane (4.3.1b) determined by the active constraints 
(Appendix A. 1) and the trust region ball (4.3.1c). Consequently, the feasible region will be 
empty. However, the value of e has to be chosen sufficiently large that the Hessian matrix is 
safely positive definite [3]. 

* Large  values of E is an indication that the radius of the trust  region 6 is small and vice versa.  
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5. Results and discussion 
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The QPSOL is used to compute the mathematical model parameters O(g(a) ,  Sw) (Appendix 
A.3).  Table 1 shows the computed values of O~(g(a), Sw) for different PC systems 
reinforced with fairly random arrangements of aggregate particles (FRA models). These 
models are for composites cured under hydrostatic pressure. These composites differ from 
each other in terms of the inherent cure shrinkage of their resin matrix, the respective 
moduli of resin and reinforcing particles, the geometric shape of these particles, and their 
size distribution. 

The q~k(g(oz), Sw) values can be used to calculate the magnitude of the maximum setting 
stresses in these systems under the assumptions stated in Section 3. The formulation can be 
applied to any PC system reinforced with spherical or quasi-spherical aggregate particles. 
The packing factor,* size distribution, shape, and geometric arrangement of the reinforcing 
particles uniquely determine values for q~k(g(a), Sw) for a particular PC system. We note 

Table I. Characteristics of the FRA models 

Model Aggregate domains* V,~s,,/ag~rcga,~ Packing ~ ( g ( a ) ,  S w)* 
factor 

FRA-86 A through U 0.1573 86.406 

FRA-82 A, B, C, D, E, F, N, 0.2195 82.001 
V, O, Q, R, S, T, U, 
G , J , M , H , P  

FRA-78 B , C , N , F ,  0.282 78.003 
O , T , K , H  

FRA-71 C, F, H, N, K 0.4083 71.006 

FRA-69 C, F, G, J, 0.449 69.011 
M , N , K  

FRA-65 C, F, N 0.5383 65.007 

0.9582600007D+ 01 
0.0000000000D+00 
0.9488875027D+ 01 

-0.3613427658D+ 01 

0.7509721461D+ 01 
0.0000000000D+ 00 
0.7078096698D + 01 

-0.2647384458D+ 01 

0.7657477360D+ 01 
0.0000000000D+ 00 
0.88914951090D+ 01 

-0.3346498818D+ 01 

0.5969345333D+ 01 
0.0000000000D+ 00 
0.2652011535D+ 01 

-0.7436865814D + 00 

0.5655753152D+ 01 
0.0000000000D+ 00 
0.1919986584D+ 01 
0.0000000000D + 00 

0.5269824012D+ 01 
0.0000000000D+00 
0.8663340591D+00 

-0.5351225743D- 01 

t Letters specifying aggregate domains are shown in Fig. 1. 
* These values were computed using specified ranges of the materials properties: v: 0.30-0.37; ~: 0.1-0.21, /3: 
0.43-2.8399, and Prd: 0.0-1.547, where Pr¢~ is the applied hydrostatic pressure normalized against tensile strength 
of the stress-free composite. 

* Packing factor is the ratio of the volume of the reinforcing particles to the total volume of the composite. 
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that in all of the analyzed models the value of ~bl(g(a), Sw) is zero. This indicates that ~01j~ 
has no effect on the prediction of maximum setting stresses. Linear terms, however, may not 
vanish for other models. 

Figures 3.1 through 3.6 show maximum setting stresses, normalized against the tensile 
strength of the stress-free composite and plotted against the rank of the maximum setting 
stresses at different locations in the resin domains. These data indicate that the effect of 
external pressure on setting stresses varies considerably from point to point, being most 
significant at points well within the resin domain. However, the setting stresses of these 
points (even in the absence of external pressure) are not the highest: maximum setting 
stresses occur at the interface between the resin and aggregate. At these points the effect of 
external pressure is not significant. For example, in FRA-86 an external pressure of 11 MPa 
(1600psi) reduces the maximum setting stress (at nodal point of rank 1) by only 7.35% 
(from 0.337 to 0.3386) of the composite strength. This percent decrease in maximum setting 
stress varies among the different FRA models. However, it does not exceed 8.62% (in 
FRA82). The effects of external pressure on the maximum setting stress in the six FRA 
models are summarized in Fig. 4. It is noteworthy that the baseline stresses (in the absence 
of external pressure) vary greatly between models. Setting stresses are relatively small in 
FRA86 and FRA82 due to efficient packing and optimum aggregate size gradation; setting 
stresses are much higher in the other models with lower and less efficiently packed 
aggregate. However, the effect of imposed hydrostatic pressure in lowering maximum setting 
stresses is very small in all of these systems. Since failure initiates at the points with the 
highest stress, the results of this work open question as to the effectiveness of compression 
molding in reducing local setting stresses in polymer concrete systems. 
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E f f e c t s  of Hydrostatic Pressure on the Magnitude of 
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6. Applications of models to real composites 

Assuming that the magnitude of applied pressure, volume ratio of resin to aggregate, the size 
distribution and shape of the aggregate particles, and the material properties of the resin 
(Poisson's ratio, modulus of elasticity and inherent shrinkage of the resin) are known, one 
can determine which model comes closest to the actual composite so the proper choice of the 
values tkk(g(a), Sw), k =0,  1, 2, 3 can be made. These values are dependent only on the 
geometric arrangement, size distribution and shape of the reinforcing particles. For example, 
assume that we have a PC system based on unsaturated polyester/styrene and reinforced 
with Ottawa sand, which is quasispherical. Assume also that the volume fraction of the 
aggregate in this system is 86% and that the size distribution of the particles falls within the 
ASTM C33 standard system. For a system with the previous characteristics the maximum 
setting stresses is estimated according to the developed formulation to be 33.86% of the 
splitting tensile strength of the composite. This is in the absence of the applied hydrostatic 
pressure. This percentage becomes slightly smaller when hydrostatic pressure is taken into 
account (32.14% for p = 0.442 of the splitting tensile strength of the composite). This can be 
used to estimate the maximum load that can be applied to the composite system before 
fracture for composites processed in the absence as well as under applied hydrostatic 
pressure. 

7. Concluding remarks 

Some reduction in setting stresses can be achieved by molding particle-reinforced composites 
under hydrostatic pressure. However, this reduction is not significant at locations where 
setting stresses are maximum, i.e. at the resin/particle interfaces. Since these locations are 
the primary candidates for initiation of microcracks that may cause failure, the practical 
importance of compression molding in reducing setting stresses is open to question. Analysis 
of different models of these composites show that the most effective means for lowering 
setting stresses is efficient packing and proper gradation of the reinforcing particles. 

Appendix A 

A.1. Inequality constraints 

Consider the general nonlinear programming problem (NLP): 

minimize f(x) (A. la) 

subject to 

ci(x ) = 0 ,  i :  l , .  . . , m ,  (A.lb) 

ci(x )>i0,  i = m + l  . . . .  , m + p .  (A.lc) 

An inequality constraint ci(x ) >! 0 is called active or binding at a feasible point x if it is 
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satisfied as equality at that point (i.e. ci(x) = 0). An equality constraint is said to be active at 

any feasible point x. Let A ( x )  = {i: 1 ~ i <- m or ci(x ) = O, i = m + 1 . . . .  , m + p}  denote the 

set of constraints that are active at the feasible point x of the nonlinear programming 

problem (NLP).  If the set A* = A ( x * )  (i.e. the set of constraints that are active at a solution 

x* of problem (NLP) is known, the remaining inequality constraints can be deleted and the 

problem reduces to an equality constrained optimization problem [13, 14]. 

A.2 .  W e a k  coercivity o f  M Q P F  objective func t ion  

Consider the following quadratic function: 

1 
f ( x )  = a r x  + ~ x T H x ,  

where 

(A.2.1) 

a E R k x @ R k a n d  H • R k×k , • 

If H is positive definite, then f (x ) - ->  ~ as Ilxll ~. 
Proof .  Without loss of generality, we consider the function: t 

1 
f(K) = ~ ~rI-I~ (A.2.2) 

Let /~1  ~ /~2 ~ " " " ~ / ~ k  be the eigenvalues of H. It is known that for any Hermitian matrix 

H, we have: 

~rH~ 
A 1 = min - r -  (A.2.3) 

~ # 0  X X 

~ r H i  
= min (A.2.4) 

If H is positive definite, then, 

A i > 0 ,  i = l  . . . . .  k ,  (A.2.5) 

and hence 

i r H x ~  AIII~I]~ > 0 ,  for all nonzero i E R  k , 

which shows that f(~)--~ ~ as 11~112~. 

(A.2.6) 

A . 3 .  Q P S O L  

The Q P S O L  is a set of subroutines which are designed to locate a minimizer of a quadratic 

function subject to linear constraints and simple upper and lower bounds on the variables 

* Any function of the form (A.2.1) can be transformed to a function of the form (A.2.2) by transferring the 
coordinate axes to a point at which the linear term arx vanishes. 
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[15]. If the quadratic function is strictly convex, a global minimizer is found; otherwise, a 
local minimizer is found. 

The following is a general form of the QPF 

minimize crx + 1 x E R  n ~ xrHx (A.3.1) 

subject to 

!~< Ax ~<u' (A.3.2)  

where c is a constant n-dimensional vector and H is a constant n × n symmetric matrix. A is 
an m x n matrix. I and u are constant n-dimensional vectors. 

A subroutine for the formulation of the quadratic programming problem is developed. 
Different simulations are considered for each FRA model. For each simulation, e is 
increased until a unique global minimizer is obtained. 

Acknowledgement 

We are indebted to the referees for their careful reading of this paper and their valuable 
suggestions for improving the paper. 

This work is supported in part by Grant #DMR8713273  from the National Science 
Foundation.  The second author is partially supported by the REDI  foundation. 

References 

1. A.M. Boriek, J.E. Akin and C.D. Armeniades, Setting Stress Distribution in Particle Reinforced Polymer 
Composites, Journal of Composite Materials, 10 (1988) 986-1002. 

2. A.M. Boriek, J.E. Akin and C.D. Armeniades, Setting Stress Distribution in Polymer Composites Reinforced 
with Multiple Sized-Aggregate, Journal of ASCE, Materials Division, 1 (1989) 217-236. 

3. A.M. Boriek, M.M. EI-Alem, J.E. Akin and C.D. Armeniades, A Theoretical Model for Voids Distribution in 
Polymer Composites and Their Effect on Setting Stresses, Journal of Probabilistic Engineering Mechanics 5 (3) 
(1990) 129-137. 

4. A.M. Boriek, Modeling of Setting Stresses in Particle Reinforced Polymer Composites Using Finite Element 
Analysis, Ph.D. Thesis, Rice University (1989). 

5. A.M. Boriek and C.D. Armeniades, Minimization of Setting Stresses Using Realistic Models for Particle 
Reinforced Polymer Composites, Presented in the Twenty-Third Annual Pittsburgh Conference on Modeling 
and Simulation, April 30-May 1, 1992. 

6. ASTM standards in building codes, vol. II, American Society for Testing and Materials, ASTM, 1988. 
7. R.D. Henshell, PAFEC 75 Theory, Results, PAFEC Ltd., Nottingham (1975). 
8. PAFEC Data Preparation Manual, PAFEC Ltd., Nottingham, U.K. (1986). 
9. E. Haque, Physicochemical Interaction between Montmorillonite and Polymerizing Systems: Effect on Particle- 

Reinforced Composites, Ph.D. Thesis, Rice University (1986). 
10. A. Goldstein, Constructive Real Analysis, New York: Harper and Row (1967). 
11. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vol. III, New York: Springer-Verlag (1984). 
12. J.E. Dennis and R.B. Schnabel, Numerical methods for Unconstrained Optimization and Nonlinear Equations, 

Englewood Cliffs, NJ: Prentice-Hall, 129-133 (1983). 
13. A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Tech- 

niques, New York: John Wiley & Sons (1968). 
14. R. Fletcher, Practical Methods of Optimization, New York: John Wiley & Sons (1987). 
15. P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, User's guide for QPSOL, a Fortran package for 

quadratic programming, version 3.2, System Optimization Laboratory, Stanford University, CA, TR SOL 84-6, 
September (1984). 


